ZPŮSOBY ODSTRAŇOVÁNÍ OXIDU DUSNÉHO Z ODPADNÍCH PLYNŮ PRŮMYSLOVÝCH A SPALOVACÍCH PROCESŮ

BOHUMIL BERNAUER^a, MIROSLAV MARKVART^b, LUCIE OBALOVÁ^c a PAVEL FOTT^d

^aVysoká škola chemicko-technologická, Ústav anorganické technologie, Technická 5, 166 28 Praha 6, ^bÚstav anorganické chemie, Akademie věd České republiky, 250 68 Řež u Prahy, ^cKatedra fyzikální chemie, Vysoká škola báňská – Technická univerzita Ostrava, tř. 17. listopadu, 708 33 Ostrava, ^dČeský hydrometeorologický ústav, Na Šabatce 17, 143 06 Praha 4, e-mail: Bohumil.Bernauer@vscht.cz, Lucie.Obalova@vsb.cz, fott@chmi.cz

Došlo dne 2.V.2001

Klíčová slova: oxid dusný, skleníkový efekt, zdroje oxidu dusného, odstraňování oxidu dusného

Obsah

- 1. Úvod
- 2. Zdroje oxidu dusného
 - 2.1. Spalovací procesy
 - 2.2. Mobilní zdroje
 - 2.3 Chemické procesy
- 3. Technologie snížení emisí oxidu dusného

4. Závěr

1. Úvod

Oxid dusný (N_2O , azoxid) byl dlouho považován za relativně neškodnou a nepříliš zajímavou látku s omezeným využitím v potravinářství, v medicíně a dále jako speciální oxidační činidlo, např. pro selektivní oxidaci benzenu na fenol¹⁶. Zcela byl však podceněn jako potenciální zdroj nezanedbatelných environmentálních problémů. V minulém desetiletí značně vzrostl zájem o tuto sloučeninu, když byl oxid dusný identifikován jako látka poškozující stratosférickou ozonovou vrstvu a zároveň byl zařazen do skupiny velmi stálých látek přispívajících ke vzniku skleníkového efektu. N_2O je chemicky relativně stálý, a proto se dostává až do stratosféry, kde je jedním ze zdrojů oxidu dusnatého (NO), vznikajícího podle rovnice:

$$N_2 O + O \rightarrow 2 NO \tag{1}$$

Oxid dusnatý se podílí na rozkladu ozonu v dusíkovém cyklu rozpadu ozonu, kde působí jako katalyzátor:

$$NO + O_3 \rightarrow O_2 + NO_2 \tag{2}$$

$$NO_2 + O \to NO + O_2 \tag{3}$$

Oxid dusný se vyskytuje v atmosféře v řádově nižších koncentracích než oxid uhličitý (koncentrace CO_2 je 356 ppmv, zatímco současná koncentrace N_2O je 310 ppbv), avšak jeho absorpční schopnost je více než 200x vyšší než u CO_2 , má tedy vysoký potenciál skleníkového oteplování (GWP – Greenhouse Warming Potential). Hodnota GWP pro N_2O je 170 (cit.^{1,2}). Důležitá je také jeho dlouhá doba setrvání v atmosféře (odhad se pohybuje mezi 120–150 roky) a dále to, že spolu s methanem absorbuje infračervené záření v oblasti, kde není absorbováno molekulami CO_2 a H_2O . Odhaduje se, že celkový vliv N_2O je asi 6 % antropogenního příspěvku ke skleníkovému efektu^{2,3}.

Objasnění negativního vlivu N_2O na životní prostředí vedlo v posledním desetiletí k dlouhodobému sledování jeho koncentrace v atmosféře. Byl zjištěn růst koncentrace o 0,5– 1,1 ppbv/rok při průměrné současné koncentraci asi 311 ppbv (cit.^{4,5}). Měření množství N_2O v polárních ledovcích ukázala, že tato současná koncentrace je nejvyšší za posledních 45 000 let. Od poslední doby ledové až do 19. století zůstávala koncentrace oxidu dusného konstantní. V 19. století došlo k porušení přirozené rovnováhy mezi celkovým přírůstkem a úbytkem N_2O . Předpokládá se, že toto zvýšení je způsobeno lidskou činností. Na základě analýzy experimentálních dat⁴ byl vytvořen jednoduchý matematický model vystihující přibližně změnu koncentrace N_2O v atmosféře:

$$dC/dt = S(t) - k.C$$

$$S(t) = 1121,2t^{3} - 6355,5t^{2} - 12009,8t^{2} - 7563,3$$

$$t^{2} = t/1000$$

$$k = 0,0083 \text{ rok}^{-1}$$
(4)

kde C je koncentrace N_2O v zemské atmosféře (ppbv), t čas v rocích, S(t) empirická funkce vystihující závislost emisí N_2O na čase. Počáteční hodnoty jsou

$$t_0 = 1850$$
 $C = 275 \text{ ppbv N}_2 O$ (5)

Podle posledních měření dochází k mírnému snížení přírůstků emisí N_2O , a proto výsledky získané z výše uvedeného matematického modelu, který předpovídá koncentraci N_2O v roce 2020 v okolí 320 ppbv, se zdají nadhodnocené. Na tomto snížení koncentrace N_2O se s největší pravděpodobností podílejí procesy jeho odstraňování z některých zdrojů.

Ke stabilizaci současné koncentrace N_2O na hodnotě 310 ppb je nutná 70–80 % redukce emisí způsobených člověkem. Odstranění či alespoň snížení emisí oxidu dusného se tak stává jedním z důležitých úkolů v ochraně životního prostředí. Uvedené skutečnosti vedly k rozsáhlým měřením na různých částech země a ke snaze o základní inventarizaci zdrojů N_2O .

Tabulka I

Antropogenní zdroje oxidu dusného^{6–8}

Zdroj	Emise N ₂ O [kt/rok]	Koncentrace N ₂ O v emisích	Počet lokálních zdrojů	Procentický podíl antropogenních zdrojů	
Výroba kyseliny adipové	370-550	30–50 % mol	23	5-8	
Výroba kyseliny dusičné a kaprolaktamu	280–370	300–3000 ppm	255	4-8	
Výroba glyoxalu	100	_	_	_	
Hnojiva	1000-2200	_	_	4-45	
Spalovací procesy stacionární	190-520	_	>1000	4–10	
Spalovací procesy mobilní	400-850	_	$>2 \times 10^{8}$	4–15	
Spalování biomasy	500-1000	_	_	10-20	
FCC ^a	?				
Spalovny	?				
Ostatní chemické procesy	?				

^a Fluid Catalytic Cracking – Fluidní katalytické krakování těžkých frakcí ropy

Obr. 1. Celkové emise N_2O odhadované v roce 1994 (cit.²); 1 – přírodní zdroje (55 %), 2 – zemědělství (34 %), 3 – spalování biomasy (4 %), 4 – průmysl (2 %), 5 – energetika (5 %)

Z uvedeného vyplývá, že je nejvýše potřebné cíleně zavádět opatření ke snížení emisí této látky. Proto je také vývoji a aplikaci procesů vedoucích ke snížení emisí N_2O věnována ve světě značná pozornost, i když emisní limity N_2O nejsou dosud odpovídajícími předpisy uzákoněny.

2. Zdroje oxidu dusného

Odhad celkového množství N_2O , které se ročně dostane do atmosféry, se pohybuje kolem 22 miliónů tun⁵. Rozdělení zdrojů oxidu dusného je uvedeno na obr. 1. Antropogenní zdroje N_2O jsou odhadovány na 4,7–7,0 Mt/rok, což činí 30–40 % veškerých zdrojů. Souhrn odhadů antropogenních zdrojů je uveden v tabulce I. Z velkého rozptylu uvedených údajů vyplývá, že určení množství emitovaného N_2O je obtížné a snaha o zpřesnění dat je vyjádřena řadou deklarací, počínaje úmluvou UNFCCC (United Nations Framework Convention on Climate Change) z Rio de Janeira v roce 1992. Byly proto formulovány zásady postupů pro odhady těchto údajů, které jsou pravidelně publikovány jako IPCC (International Panel on Climate Change) Guidelines For National Greenhouse Gas Inventories.

Oxid dusný antropogenního původu je emitován do ovzduší při spalování fosilních paliv, biomasy a odpadů a z některých průmyslových procesů. Dále vzniká v zařízeních na snižování emisí NO_x – při provozu automobilových motorů s třícestnými katalyzátory, při selektivní nekatalytické redukci NO_x močovinou a amoniakem (SNCR – Selective Non Catalytic Reduction) a při selektivní katalytické redukci NO_x (SCR – Selective Catalytic Reduction). Emise N_2O lze tedy obecně očekávat v odpadních plynech z těch procesů, kde jsou přítomny i NO_x .

2.1. Spalovací procesy

Podíl stacionárních zdrojů výroby energie založených na spalování fosilních paliv na celkových ročních emisích oxidu dusného se v současnosti odhaduje na 5–10 % (cit.⁴⁹). U konvenčních tepelných zařízení, vybavených hořáky s pracovní teplotou nad 1000 °C (plynná a kapalná paliva; v případě uhlí práškové spalování), jsou emise N₂O obecně velmi nízké, neboť přímá syntéza N₂O (na rozdíl od oxidu dusnatého) ze vzdušného dusíku a kyslíku přispívá k celkové emisi N₂O jen malou měrou, jak o tom svědčí výpočet rovnovážné koncentrace N₂O (pro názornost i NO) ve spalinách zemního plynu, provedený metodou minimalizace celkové Gibbsovy energie systému (obr. 2). Uvádí se⁹, že při spalování zemního plynu činí běžné emise N₂O maximálně 2 ppm, u kapalných paliv max. 5 ppm.

Za dominantní zdroj N_2O je proto považováno spalování tuhých paliv, hlavně uhlí, ve kterých jsou obsaženy látky s chemicky vázaným dusíkem (palivový dusík), které jsou následně v závislosti na podmínkách vedení procesu hoření ve větší či menší míře transformovány na N_2O . Emise oxidu dusného z různých technologií spalování uhlí jsou pak závislé hlavně na teplotě spalování, koncentraci kyslíku ve spalinách a zejména na druhu uhlí.

Nejsou-li k dispozici bližší charakteristiky zdroje emisí, je pro první přibližný odhad emitovaného množství N_2O doporučeno¹⁰ aplikovat emisní faktory uvedené v souhrnné tabulce II. V tabulce jsou uvedeny hodnoty emisních faktorů, používané v případech, kdy není možné stanovit je měřením nebo jiným exaktním způsobem.

Tabulka II

Hodnoty emisních faktorů	$N_2O v kg N_2O/TJ (cit.10)$
--------------------------	------------------------------

$Palivo \rightarrow Obor \downarrow$	Uhlí ^a	Zemní plyn	Ropné frakce	Dřevo	Dřevěné uhlí	Biomasa, odpady
Energetika	1,4	0,1	0,6	4	4	4
Zprac. průmysl	1,4	0,1	0,6	4	4	4
Doprava						
letecká	_	_	2	_	_	_
pozemní	_	0,1	$0,6^{b}$	_	_	_
železniční	1,4	_	0,6	_	_	_
lodní	1,4	_	0,6	_	_	_
Ostatní						
obchod-administrativa	1,4	0,1	0,6	4	1	4
domácnost	1,4	0,1	0,6	4	1	4
zemědělství	1,4	0,1	0,6	4	1	4

^a Hnědé uhlí poskytuje méně N₂O než černé (bitumenické) uhlí. Měření ukazují, že hodnoty emisních faktorů z tepelných elektráren jsou velmi nízké. Emisní faktory z fluidních kotlů jsou přibližně desetkrát vyšší než z roštových kotlů, ^b převažují-li vozidla s třícestnými katalyzátory, může být emisní faktor vyšší. Emisní faktory pro dvoudobé motory jsou třikrát vyšší než pro čtyřdobé

Obr. 2. Rovnovážný obsah oxidů dusíku ve spalinách při spalování zemního plynu v závislosti na teplotě při 2 různých poměrech vzduch: zemní plyn; horní dvojice křivek odpovídá obsahu 6 % O_2 ve spalinách, dolní dvojice křivek obsahu 3 % O_2 ve spalinách, x = molární zlomek

2.2. Mobilní zdroje

Na rozdíl od normovaných škodlivin výfukových plynů ze spalovacích motorů (CO, uhlovodíky, NO_x), není N₂O považován za kritickou složku, a z toho důvodu neexistuje dostatek experimentálních dat potřebných pro přesné určení emisních faktorů N₂O z provozu silničních vozidel. Primární experimentální data jsou obtížně porovnatelná, neboť výsledné složení spalin je ovlivněno řadou faktorů, jejichž hodnoty nejsou vždy uváděny (detailní složení paliva, podmínky testu, stav katalyzátoru, aj.).

Mechanismus vzniku N_2O ve spalovacích motorech není dosud zcela vyjasněn¹¹. Ukazuje se však, že emise N_2O z vozidel vybavených třícestným katalyzátorem v průběhu prvních ujetých 20 000 km silně narůstají, a proto měření na nových automobilech neposkytuje správné výsledky¹². Tento fakt je v literatuře připisován interakci katalyticky účinné složky se sírou obsaženou v palivu^{6,12}. Vzhledem k tomu, že emise N_2O z vozů vybavených třícestnými katalyzátory několikanásobně převyšují emise z vozů bez katalytické detoxikace výfukových plynů, zdá se být evidentní, že majoritním zdrojem N_2O ve výfukových plynech je katalytická redukce primárně vzniklého NO_x uhlovodíky a CO.

Automobily jsou dle metodiky IPCC děleny na lehké osobní s benzinovým motorem do hmotnosti 3855 kg (lightduty gasoline passenger cars), lehké nákladní s benzinovým motorem do hmotnosti 3855 kg (light-duty gasoline trucks), těžká nákladní vozidla s benzinovým motorem s hmotností vyšší než 3855 kg (heavy-duty gasoline vehicles), dále jsou obdobně rozdělena vozidla se vznětovými (dieselovými) motory a konečně to jsou dvoutaktní motory. Poněkud odlišně jsou charakterizovány třídy vozidel v evropské nomenklatuře (COPERT), např. osobní vozy jsou vymezeny hmotností max. 2500 kg.

Emisní faktory jsou vyhodnocovány nezávisle v USA (metodika US EPA Mobile 5) a v Evropě, i když doporučované metodiky jsou mnohdy založeny na stejných primárních zdrojích dat. Odhady emisí v Evropě jsou založeny na modelu COPERT II. Výpočty jsou založeny na těchto parametrech:

- celková spotřeba paliva,
 počty vozidel podle druhu vozidla,
- jízdní podmínky,
- emisní faktory,
- ostatní parametry.

Základní vzorec pro výpočet emisí z motoru v ustáleném chodu (hot emissions) je ve tvaru:

EMISE (g) = emisní faktor (g/km) \times ujeté kilometry za rok (km)

Emise ze studených startů jsou rovněž započteny do emisních faktorů. Faktor vyjadřující poměr emisí ze studeného startu a z ustáleného chodu motoru je použit pro výpočet emisí při jízdě odpovídající studenému motoru. Odhad počtu kilometrů připadajících na jízdu se studeným motorem je však zatím značně nepřesný.

Tabulka III		
Emisní faktory ^a N ₂ O	ze spalovacích	motorů

HNO₂

Benzinové motory	Neřízené	Řízené starší	Řízené	Katal	Katalyzátor	
				oxidační	třícestný	
Čtyřdobé	0,001/0,04–0,06	0,002/0,07	0,002/0,08	0,002/0,08	0,02/0,8	
Dvoudobé	0,001–0,002/ 0,05–0,007	-	_	_	-	
Zážehové motory	_	_	0,004/0,2	_	_	

^a Emisní faktor (g N₂O/MJ)/emisní faktor(g N₂O/kg paliva)

Tabulka IV

Emisní faktory (EF) $\mathrm{N_2O}$ používané v průmyslových zemích

Země, technologie	EF^{a}
USA	2–9 ^b
– moderní integrované jednotky	< 2
– atmosférické	4–5
– středotlaké Japonsko	6–7,5 2 2–5 7
Japonsko	2,2-3,7

^a [kg N_2O/t HNO₃], ^b vyšší hodnoty emisních faktorů byly zaznamenány u některých výroben bez NSCR, 80 % technologií v USA a Kanadě je vybaveno NSCR

V tabulce III jsou uvedeny přehledy emisních faktorů N₂O pro automobilovou dopravu, rozdělené podle typu motoru a úrovně katalytického odstraňování škodlivin z výfukových plynů. Údaje jsou dostupné pouze pro benzinové a dieselové motory, pro motory používající jako palivo LPG (Liquified Petroleum Gas), popř. methanol neexistují žádná data.

2.3. Chemické procesy

Z oblasti chemického průmyslu se jedná zejména o výrobní procesy, kde se používá jako oxidačního činidla kyseliny dusičné, případně kde dochází k oxidaci amoniaku a aminů.

Výroba kyseliny adipové

Kyselina adipová (HOOC–(CH₂)₄–COOH) je hlavní surovinou pro výrobu nylonu, změkčovadel a maziv. Její světová produkce je odhadována na 2 Mt (cit.¹³). Nejčastěji používaná technologie kyseliny adipové je založena na oxidaci cyklohexanu na směs cyklohexanolu a cyklohexanonu, která je oxidována kyselinou dusičnou na kyselinu adipovou.

Na 1 mol kyseliny adipové vzniká přibližně 1 mol oxidu dusného, tedy 0,3 kg N₂O/1 kg kyseliny adipové. Odpadní plyny tak obsahují 30–50 % N₂O a 0,7–1,0 % NO_x, což představuje 5–8 % z celkového množství antropogenních emisí oxidu dusného v roce 1990 (cit.¹⁴). Výrobci kyseliny adipové intenzivně spolupracují na vývoji procesů vedoucích ke snížení emisí N₂O, byla proto ustavena skupina předních světových výrobců kyseliny adipové (DuPont, BASF, Bayer,

Tabulka V	
Souhrnné emisní faktory (EF) N_2O pro	technologie

Tlak [MPa]	Technologie DENOX	EF [kg N ₂ O/t]	Pozn.
0,1 0,1 0,4 0,4	SCR - SCR	9,05 9,2 5,43 5,58	$\eta_{NO_x}^{a} = 0,90$ $\eta_{NO_x}^{a} = 0,90$
0,4	NSCR	1,09	$\eta_{N_{2}O}{}^{b} = 0,80$

 $^{a}\eta_{NO_{x}}$ – stupeň konverze NO $_{x}$ v SCR, $^{b}\eta_{N_{2}O}$ – stupeň konverze N $_{2}O$ v NSCR

Asahi, Rhône-Poulenc), která řešila zpracování odpadních plynů z této technologie^{15,16}.

Výroba kyseliny dusičné

Prvním stupněm výroby kyseliny dusičné je katalytické spalování vzduchoamoniakové směsi na Pt–Rh sítech při teplotě cca 800 °C. 2–5 % z celkového množství přiváděného amoniaku je při tom neselektivně oxidováno na oxid dusný, případně až na dusík:

$$2 \text{ NH}_3 + 2 \text{ O}_2 \rightarrow \text{N}_2\text{O} + 3 \text{ H}_2\text{O}$$
 (6)

Oxid dusný prochází dalšími výrobními stupni, aniž by se absorboval a odchází v odpadních plynech. Selektivní katalytická redukce amoniakem nebo uhlovodíky (SCR – Selective Catalytic Reduction) někdy používaná pro snížení emisí NO_x může podle některých zdrojů¹⁷ snižovat i emise oxidu dusného, na druhé straně produkuje N₂O oxidací redukčního činidla (amoniaku). Oxid dusný je redukován rovněž při katalytickém odstraňování NO_x z koncových plynů totální redukcí (NSCR – Non Selective Catalytic Reduction). Výpočet množství produkovaného N₂O by měl být prováděn tak, aby vystihoval používané technologie odstraňování NO_x (SCR nebo NSCR).

Podle typu používané technologie jsou v jednotlivých zemích užívány emisní faktory N_2O uvedené v tabulce IV.

Emisní faktor N_2O z oxidace NH_3 je určen stupněm konverze NH_3 na N_2O . Při vysokoteplotní oxidaci na Pt–Rh sítech

Tabulka VI Roční emise $\rm N_2O$ v t $\rm N_2O$ z výroben $\rm HNO_3$ v ČR v letech 1990–1998

Tlak [MPa]	DENOX	1990	1992	1993	1996	1997	1998
0,1 0,4 0,4	SCR SCR NSCR	3165 309 148	2597 253 121	1987 194 93	2819 279 140	2941 278 124	3133 307 149
Σ		3622	2971	2274	3238	3343	3589

závisí konverze NH₃ na N₂O na teplotě oxidace a mění se v rozmezí 2,5 % (800 °C) až 1,5 % (900 °C) (cit.¹⁹). Tato teplota je závislá na celkovém tlaku ve spalovací části, proto stupeň konverze NH₃ na N₂O závisí také tlaku a dalších parametrech oxidace NH₃. V tabulce V jsou uvedeny odhady souhrnných emisních faktorů (EF) podle tlaku ve spalovací části a použité denitrifikační technologie (DENOX).

Pro ilustraci uvádíme odhady emisí $\rm N_2O~z~výroben~HNO_3~v~ČR~v$ letech 1990–1998.

Výroba glyoxalu

Glyoxal (ethandial) OHC–CHO se komerčně vyrábí více způsoby. Jedna z možností spočívá v oxidaci acetaldehydu kyselinou dusičnou při teplotě asi 40 °C. Maximální konverze acetaldehydu je cca 70 %, selektivita závisí na poměru koncentrací reaktantů. Odhad udává vznik 330 kg N_2O na 1 tunu vyrobeného glyoxalu⁷.

Výroba kaprolaktamu

Kaprolaktam NH(CH₂)₅CO je výchozí surovinou pro výrobu nylonu. Komerčně se používá více výrobních postupů. Jeden z možných způsobů je založen na fotochemicky inicializované přeměně cyklohexanu na cyklohexanon. Jedním z kroků tohoto výrobního postupu je spalování amoniaku, kde lze předpokládat vznik oxidu dusného obdobně jako v technologii kyseliny dusičné.

Výroba kyanovodíku

Jedním ze způsobů výroby HCN je Andrussowův proces amoxidace methanu na Pt–Rh katalytických sítech, používaný např. v ČR. Katalytický proces je do jisté míry analogický s oxidací NH₃ v technologii kyseliny dusičné, avšak druhý reakční krok probíhá v redukční atmosféře (redukce NO methanem), a tedy výsledné koncentrace N_2O v plynné fázi budou podstatně nižší než u samotné oxidace amoniaku. Kvalifikovaným odhadem byl stanoven emisní faktor N_2O na 2,26 kg N_2O na 1 t vyrobeného HCN.

3. Technologie pro snížení emisí oxidu dusného

Návrhy na snížení emisí N₂O vycházejí vždy z podmínek konkrétního procesu a závisí především na parametrech a složení odpadních plynů. V zásadě lze volit mezi zásahem do technologie vlastního procesu potlačit vznik oxidu dusného, což bývá většinou obtížné a v řadě případů i z principiálních důvodů nemožně, nebo zařadit do stávající výrobní linky dodatkové zařízení na likvidaci vzniklého N₂O (řešení end-of-pipe).

Druhá z uvedených možností byla rozpracována v řadě variant zejména v souvislosti s řešením emisí N_2O z výroby kyseliny adipové, i když je zřejmé, že dále uvedené technologie je v zásadě možné použít i pro jiné průmyslové zdroje.

Navrhovány a v průmyslové praxi v různé míře využívány jsou následující procesy: termický rozklad N_2O , přeměna N_2O na NO, katalytický rozklad N_2O a současné odstaňování NO_x a N_2O .

Termický rozklad N_2O (nekatalytická redukce N_2O v plynné fázi)

Proces původně koncipovaný pro rozklad oxidů dusíku (NO_x) odpadajících například při moření barevných kovů, byl ve 40. letech 20. století s úspěchem využit i pro odstranění N₂O. Při procesu, probíhajícím za vysokých teplot (1350–1650 °C) se odpadní plyny zavádí do redukční zóny hořáku, ve které dochází k reakci paliva a oxidu dusného za vzniku dusíku. Stechiometricky lze průběh procesu pro případ použití zemního plynu vystihnout rovnicí:

$$CH_4 + 4 N_2O \rightarrow 4 N_2 + CO_2 + 2 H_2O$$
 (7)

Protože část N₂O je za těchto podmínek převedena na NO (uvádí se¹⁵, že při celkové konverzi N₂O 98–99 % je přibližně 1–2 % původního množství N₂O přeměněno na NO), je do prostoru zařízení v oblasti teplot 850–1000 °C nastřikováno redukční činidlo, obvykle roztok močoviny, aby v tzv. procesu selektivní nekatalytické redukce byl obsah NO_x ve výstupních plynech snížen na požadovanou emisní hodnotu.

Přeměna N₂O na NO

Touto možností se zabývají světoví výrobci kyseliny adipové od roku 1990. Některé experimentální studie naznačovaly, že lze získat 0,33 molu NO z 1 molu N_2O (cit.^{15,16,20}). Oxidace N_2O na NO probíhá v plynné fázi podle rovnice:

$$N_2O \to NO + 0.5 N_2$$
 (T > 800 °C) (8)

Spoluprací firem DuPont a Rhône-Poulenc byl vyvinut proces oxidace N_2O na NO, používaný od roku 1998 firmou Rhodia (dříve Rhône-Poulenc) v závodě na výrobu kyseliny adipové v Chalampe (Francie)¹⁶. V poloprovozním měřítku však bylo dosaženo pouze výtěžku o něco vyšším než 0,15 molu NO/mol N_2O . Vzhledem k relativně nízkému výtěžku NO a ekonomické náročnosti procesu se nezdá pravděpodobné, že tento postup dozná širšího uplatnění.

Katalytický rozklad N₂O

Elegantním řešením likvidace oxidu dusného, především ze spalovacích procesů a chemických výrob, je jeho přímý rozklad na kyslík a dusík:

$$N_2 O \rightarrow N_2 + 0.5 O_2 \tag{9}$$

Výhoda navrhované metody spočívá v tom, že proces nevyžaduje žádný redukční prostředek, produktem reakce jsou přirozené složky ovzduší a lze jej aplikovat na stávající technologie. Pro snížení emisí z výroby kyseliny dusičné je navrhována dekompozice N_2O na tepelně odolném katalyzátoru umístěném bezprostředně za hořákem na spalování vzduchoamoniakové směsi, kde reakční plyny mají ještě vysokou teplotu, která je potřebná k uskutečnění rozkladné reakce²¹.

V literatuře je popsána řada aktivních katalyzátorů různého typu na bázi kovů a oxidů kovů, samotných i nanesených na různých nosičích, dále na bázi směsných oxidů a zeolitů⁶. Důležitým požadavkem kladeným na katalyzátor je vedle vysoké katalytické aktivity také jeho stabilita v podmínkách, kde bude použit. Je nutné, aby katalyzátor byl termicky stabilní, měl malou citlivost vůči inhibici rozkladné reakce kyslíkem a vodní párou, byl odolný proti katalytickým jedům (SO₂). Nezbytná je také malá tlaková ztráta při průchodu reakční směsi katalytickým systémem. Rozkladná reakce N2O je exotermická, je tedy třeba ověřit teplotní stabilitu katalyzátorů, a to především při výrobě kyseliny adipové, kde jsou v odpadních plynech vysoké koncentrace N2O. Adiabatický vzrůst teploty zde dosahuje při 30-50 % koncentraci oxidu dusného 230–430 °C. Koncentrace N₂O v odpadních plynech z ostatních zdrojů je mnohem nižší a adibatický nárůst teploty způsobený rozkladem N2O bývá menší než 10 °C.

U kovů byla zjištěna dobrá katalytická aktivita pro rozkladnou reakci N_2O na rhodiu naneseném na různých nosičích (alumina, ZrO_2 , ZnO, TiO_2). Vysoká aktivita byla zjištěna na Rh/ZnO a Rh/Al₂O₃. Nevýhodou pro praktické použití těchto katalyzátorů je vysoká cena rhodia^{1,22}.

Mezi oxidy byla pozorována největší katalytická aktivita u oxidů přechodných kovů VIII. skupiny (Rh, Ir, Co, Fe, Ni), CuO a La_2O_3 (cit.^{23–27}). Reakční rychlosti jsou ale vesměs příliš nízké pro využití v průmyslových procesech.

Směsné oxidy vykazují aktivitu pro rozklad N₂O, podobně jako u oxidů jsou reakční rychlosti vesměs příliš nízké^{28–32}. Výjimkou jsou některé směsné oxidy obsahující kobalt, zejména oxid Co_3O_4 a další^{33–35}.

Mezi katalyzátory na bázi zeolitů jsou velmi aktivní zeolity obsahující ionty přechodných kovů (Fe, Co, Ni, Cu, Mn,

Obr. 3. Porovnání aktivity (*a*) různých katalyzátorů (vyjádřené v µmol $N_2O.g^{-1}.h^{-1}$) při 400 °C pro rozklad N_2O , testováno za průtočných podmínek; *l* – Rh/CeO₂, 2 – Rh-ZSM-5, *3* – Co-ZSM-5, *4* – Ru-ZSM-5, *5* – Co-Mg-Al-CHT 6 – Co-Rh-Al-CHT, 7 – Co-Al-CHT, 8 – Ni-Al-CHT, 9 – Cu-Al-CHT

Ce, Ru, Rh, Pd) v různých matricích (ZSM-5, ZSM-11, Beta, mordenit, USY, ferrierit)^{27,36,37}. Aktivity na nejvíce studovaném zeolitu ZSM-5 klesají v pořadí: Rh, Ru > Pd > Cu > Co > Fe > Pt > Ni > Mn. Na některých zeolitech (Rh-ZSM-5, Cu-ZSM-5) se projevuje inhibice reakce kyslíkem uvolňovaným v průběhu reakce nebo přítomným v reakční směsi^{36,38}. Silná adsorpce vodní páry ve struktuře zeolitu však až na výjimky snižuje možnost využití těchto materiálů v průmyslu³⁹.

Termickým rozkladem sloučenin na bázi hydrotalcitu lze získat aktivní katalyzátor pro rozkladnou reakci oxidu dusného⁴⁰. Hydrotalcit $(Mg_6Al_2(OH)_{16}CO_3, 4H_2O)$ je poměrně vzácný přírodní minerál, pro přípravu katalyzátorů pro rozklad N₂O byly používány syntetické strukturní analogy hydrotalcitu s obecným chemickým složením $M_{1-x}^{II} M_x^{II} (OH)_2 A_{x/n}^{n-}$.y H₂O, kde M^{II} značí dvojmocný kation (např. Mg²⁺, Zn²⁺, Co²⁺, Cu²⁺, Ni²⁺, Mn²⁺), M^{III} značí trojmocný kation (např. Al³⁺, Cr³⁺, Fe³⁺) a A^{n–} anion CO^{2–}₃. Tyto sloučeniny jsou známy pod skupinovými názvy např. jako sloučeniny typu hydrotalcitu (hydrotalcite-like compounds), podvojné vrstevnaté hydroxidy (layered double hydroxides), aniontové jíly (anionic clays). Je vžité zkrácené značení typu M(II)-M(III)-CHT.

Aktivní katalyzátory rozkladu N₂O lze získat např. termickým rozkladem syntetických hydrotalcitů Co–Al–Rh–HT a Co– Mg–Al–HT (cit.⁴¹). Výhodou kalcinovaných sloučenin typu hydrotalcitu je menší citlivost vůči katalytickým jedům a větší tepelná stabilita. Na rozdíl od zeolitických katalyzátorů mohou pracovat i za vyšších teplot a jsou odolné vůči vodní páře. Aktivity různých katalytických systémů jsou uvedeny na obr. 3.

Současné snížení emisí N_2O i NO (katalytická redukce N_2O)

Vzhledem k tomu, že emise N2O jsou téměř vždy doprovázeny emisemi vyšších oxidů dusíku (NO, NO₂), bylo by z praktického hlediska výhodné, pokud by za podmínek katalytické redukce NO_x bylo možné uskutečnit současně i redukci N2O. U některých výroben kyseliny dusičné je pro odstraňování NO_x z koncových plynů používán proces tzv. totální redukce (NSCR) (viz kap. 3), při kterém jsou oxidy dusíku redukovány přídavkem mírně nadstechiometrického množství vhodného redukčního činidla (např. zemního plynu, svítiplynu, CO), vztaženo k celkovému množství kyslíku a NO_v. Jak bylo měřením prokázáno¹⁰, za takových podmínek probíhá paralelně s redukcí NO_x i redukce N₂O, přičemž stupeň konverze N₂O je odhadován na 80 %. Proces NSCR probíhá v přítomnosti katalyzátorů na bázi platinových kovů (Pt, Pd) při teplotách odvozených od použitého redukčního prostředku. Pro zemní plyn se teplota pohybuje v rozmezí 450-750 °C. V současnosti jsou vyvíjeny katalyzátory, které by pracovaly za podmínek vyhovujících jak pro redukci NO_x tak pro redukci N2O. Rozmezí teplot musí být proto kompromisem pro oba procesy, tedy reakční teplota je udržována v rozsahu 300–450 ° \hat{C} (cit.⁴³).

Postup umožňující současné snížení emisí N₂O i NO byl navrženo Armorem⁴⁴. Na zeolitickém katalyzátoru Co-ZSM-5 je v přítomnosti kyslíku a methanu redukován oxid dusnatý (*10*) a současně rozkládán oxid dusný (*11*):

$$2 \text{ NO} + \text{CH}_4 + \text{O}_2 \rightarrow \text{N}_2 + 2 \text{ H}_2\text{O} + \text{CO}_2$$
 (10)

$$2 \operatorname{N}_2 \operatorname{O} \to 2 \operatorname{N}_2 + \operatorname{O}_2 \tag{11}$$

Na redukci NO může být použit místo methanu také propan. Protože redukce NO probíhá přes meziprodukt NO₂, kyslík vznikající rozkladem N₂O zvyšuje konverzi NO v případě nedostatku přiváděného kyslíku. S katalyzátorem Rh/ γ -Al₂O₃ může být jako redukční činididlo také použit vodík⁴⁵.

Současné snížení emisí NO_x a N_2O použitím Shell De NO_x systému bylo prezentováno na konferenci Asia Nitrogen '98 (cit.⁴⁶). Japonský patent⁴⁷ nabízí poněkud odlišnou metodu odstranění N_2O z odpadních plynů obsahujících současně významné koncentrace NO_x . N_2O je nejdříve převeden katalytickou oxidací na NO a dále je použita standartní selektivní katalytická redukce (SCR) pro odstranění celkového NO.

Selektivní katalytickou redukci N_2O a NO_x s použitím uhlovodíků (propan nebo methan) lze uskutečnit pomocí katalyzátorů Fe-zeolit⁴⁸, které jsou odolné vůči působení vodní páry a SO₂.

4. Závěr

Uvedené procesy vedoucí ke snížení emisí oxidu dusného jistě nezahrnují všechny možnosti. Výběr vhodného řešení snížení emisí N_2O závisí vždy především na konkrétním průmyslovém procesu a finančních nákladech. Z uvedených způsobů se zdá být nejvhodnější katalytický rozklad oxidu dusného na kyslík a dusík. Jeho výhodou vzhledem k dalším navrhovaným řešením je, že nevyžaduje přidávání žádného redukčního činidla a produkty jsou přirozené složky ovzduší. Prakticky použitelné postupy jsou však spíše založeny na homogenní nebo katalytické redukci oxidu dusného.

V současné době neexistuje v České republice technologie odstraňování oxidu dusného a to i z toho důvodu, že největší průmyslový zdroj $N_2O - výroba kyseliny adipové - není v ČR$ prováděna. Nicméně existují významné průmyslové zdroje oxidu dusného v relativně vysokém počtu technologických linek na výrobu kyseliny dusičné, tedy problém odstraňování N₂O může být zanedlouho aktuální. V řadě průmyslových odvětví nejsou k dispozici přesná data získaná experimentální cestou, která by vystihovala úroveň emisí N2O v daných oborech. Zásadním přínosem k této problematice by tedy bylo tato podrobná měření realizovat v předstihu k předpokládaným legislativním krokům v oblasti emisních limitů N2O. Zvýšená pozornost by měla být rovněž věnována výzkumným projektům v oblasti katalytických procesů rozkladu a redukce N2O, které by vedly k vývoji potřebných technologií odstraňování N₂O z různých zdrojů.

Autoři děkují RNDr. Janu Pretlovi, CSc. (Český hydrometeorologický ústav, odbor klimatických změn) za trvalý zájem o problematiku průmyslových emisí N_2O .

Tato práce byla podporována v rámci výzkumného záměru MŠMT ČR CEZ: J19/98:223100001 Katalytické procesy v chemii a chemické technologii.

LITERATURA

- Junko O., Tanaka R., Obuchi A., Ogata A., Bamwenda G. R., Kushiyama S.: Phys. Chem. 41, 119 (1997).
- Dann T. W., Schulz K. H., Mann M., Collings M.: Appl. Catal., B 6, 1 (1995).
- 3. Contribution of Working Group I to the Second Assess-

ment Report of the Intergovernmental Panel on Climate Change. IPCC, Cambridge 1996.

- 4. Kroeze C., Mosier A., Bouwman L.: Global Biogeochem. Cycles 13, 1 (1999).
- Kroeze C., Mosier A.: Proceedings of the Second International Symposium Non-CO₂ Greenhouse Gases: Scientific Understanding, Control and Implementation, Noordwijkerhour, 8–10 September 1999, str. 45.
- Kapteijn F., Rodriguez-Mirasol J., Moulijn J. A.: Appl. Catal., B 9, 25 (1996).
- Noskov A. S., Abdulin I. R.: Chem. Sustain. Develop. 1, 351 (1993).
- 8. De Soete G. G.: Rev. Inst. Franc. Petr. 48, 413 (1993).
- 9. Skořepová I.: Ochrana ovzduší 6, 4 (1997).
- 10. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, sv. 1–3, 1997.
- 11. De Soete G. G.: Revue de l'IFP 45, 663 (1990).
- 12. Michaels H.: *Emissions of Nitrous Oxide from Highway Mobile Sources*. US EPA, Washington 1998.
- 13. Anonym: Adipic Acid/Adiponitrile. Chem. Week 2, 31 (1999).
- 14. Thiemens M. H., Trogler W. C.: Science 251, 932 (1991).
- Reimer R. A., Slaten C. S., Seapan M., Koch T. A., Tomlinson P. E.: Proceedings of 6th International Workshop on Nitrous Oxide Emissions. Turku 1995, str. 515.
- Reimer R. A., Slaten C. S., Seapan M., Koch T. A., Triner V. G.: Proceedings of the Second International Symposium Non-CO₂ Greenhouse Gases: Scientific Understanding, Control and Implementation, Noordwijkerhour, 8– 10 September 1999, str. 347.
- 17. Markvart M.: soukromé sdělení, 1999.
- IPCC/OECD/IEA: Expert Group Meeting on Good Practice in Inventory Preparation – Energy, Road Transport, (1999).
- Atroščenko V. I., Kargin S. I.: Technologia azotnoj kisloty. Chimija, Moskva 1970.
- 20. Kurumisawa T., Yamaguchi F.: JP 04135620 (1992).
- 21. Klein M., Kubisa R.: WO 98-EP5126 (1998).
- 22. Dann T. W., Schulz K. H., Mann M., Collings M.: Appl. Catal., B 6, 1 (1995).
- 23. Winter E. R. S.: J. Catal. 15, 144 (1969).
- 24. Winter E. R. S.: J. Catal. 19, 32 (1970).
- 25. Winter E. R. S.: J. Catal. 34, 431 (1974).
- 26. Zhang X., Walters A. B., Vannice M. A.: Appl. Catal., B 4, 237 (1994).
- 27. Li Y., Armor J. N.: Appl. Catal., B 1, L31 (1992).
- 28. Christopher J., Swamy C. S.: J. Mol. Catal. 62, 69 (1990).
- Sivaraj C., Reddy B. M., Rao P. K.: J. Mol. Catal. 47, 17 (1988).
- Swamy C. S., Cristopher J.: Cat. Rev.-Sci. Eng. 34, 409 (1992).
- 31. Egerton T. A., Stone F. S., Vickerman J. C.: J. Catal. *33*, 307 (1974).
- 32. Li Y., Armor J. N.: Appl. Catal., B 1, L21 (1992).
- Zeng H. C., Qian M., Pang X. Y.: Stud. Surf. Sci. Catal. 116, 485 (1998).
- 34. Qian M., Zeng H. C.: J. Mater. Chem. 7, 493 (1997).
- 35. Burgkhardt W., Froehlich F., Seifert F.: DE 19700490 (1998).
- Akira O. J., Atsushi O., Bamwenda R., Hiroshi Y., Satoshi K., Koichi M.: Appl. Catal., B *12*, 227 (1997).

- Centi G., Galli A., Montanari B., Perathoner S., Vaccari A.: Catal. Today 35, 113 (1997).
- Kapteijn F., Gregorio M., Rodriguez-Mirasol J., Moulijn J.: J. Catal. *167*, 256 (1997).
- 39. Armor J. N., Farris T. S.: Appl. Catal., B 4, L11 (1994).
- 40. Kannan S., Swamy C. S.: Appl. Catal., B 3, 109 (1994).
- 41. Swamy C. S., Kannan S., Li Y., Armor J. N., Braymer T. A.: US 5 407 652 (1995).
- Armor J. N., Braymer T. A., Farris T. S., Li Y., Petrocelli F. P., Weist E. L., Kannan S., Swamy C. S.: Appl. Catal., B 7, 397 (1996).
- 43. Chen J., Heck R. M., Farrauto R. J.: Catal. Today *11*, 517 (1992).
- 44. Li Y., Armor John N.: Appl. Catal., B 3, 55 (1993).
- 45. Xie S., Lunsford J. H.: Appl. Catal., A *188*, 137 (1999). 46. Ikeyama N., Iwanaga Y., Torikai J., Adachi M.: JP
- 06190244 (1994).
- 47. Kurumisawa T., Yamaguchi F.: JP 04 135 620 (1992).
- 48. Pels J. R., Verhaak M. J. F. M.: Proceedings of the Second

International Symposium, Non-CO₂ Greenhouse Gases: Scientific Understanding, Control and Implementation, Noordwijkerhour 8–10 September 1999, str. 359.

 Svoboda K., Hartman M., Veselý V.: Chem. Listy 88, 13 (1994).

Bohumil Bernauer^a, Miroslav Markvart^b, Lucie Obalová^c, and Pavel Fott^d (^aDepartment of Inorganic Technology, Institute of Chemical Technology, Prague, ^bInstitute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, Řež near Prague, ^cDepartment of Physical Chemistry, Mining University, Technical University, Ostrava, ^dCzech Hydrometeorological Institute, Prague): Methods of Removal of Nitrous Oxide from Waste Gases of Industrial and Combustion Processes

The review covers the current state of problems of nitrous oxide emissions from industrial and combustion processes and gives a survey of technologies used and developed for their lowering.